Magnitudes and Orientations of ³¹P Chemical Shielding Tensors in Pt(II)–Phosphine Complexes and Other Four-Fold Coordinated Phosphorus Sites

Matthias Bechmann, †,‡ Stephan Dusold, † Franz Geipel, $^{\$}$ Angelika Sebald, *,†,‡ and Dieter Sellmann $^{\$,\parallel}$

Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany, and Institut für Anorganische Chemie II, Universität Erlangen, Egerlandstr. 1, D-91058 Erlangen, Germany

Received: October 11, 2004; In Final Form: March 26, 2005

³¹P MAS and double-quantum filtered ³¹P MAS NMR experiments at and near the n = 0 rotational resonance condition, as well as off-magic angle spinning ³¹P NMR experiments on two polycrystalline samples of Pt(II)-phosphine thiolate complexes are reported. Numerical simulations yield complete descriptions of the two ³¹P spin pairs. ¹⁹⁵Pt MAS NMR spectra are straightforward to obtain but sensitively reflect only some parameters of the ¹⁹⁵Pt(³¹P)₂ three-spin system. Based on the ³¹P NMR results obtained and in conjunction with a large body of literature data and irrespective of the chemical nature of the specimen, a unified picture of the dominating motif of ³¹P chemical shielding tensor orientations of phosphorus sites with 4-fold coordination is identified as a local (pseudo)plane rather than the directions of P element bond directions.

Introduction

Small isolated spin systems play an important role in the context of many contemporary solid-state NMR approaches, ranging from applications aiming at structure elucidation to the evaluation of the performance of newly developed pulse sequences. Isolated homonuclear ³¹P spin pairs occur, for instance, in molecular fragments P-M-P in transition-metalphosphine complexes. If M happens to be a magnetically active isotope, then the P-M-P fragment represents an isolated threespin system. It is usually straightforward to obtain high-quality experimental ³¹P solid-state NMR spectra of these (and similar) spin systems in polycrystalline samples. The more challenging aspects are concerned with the extraction of the full set of unknown parameters describing these spin systems. Analysis of such experimental ³¹P NMR spectra requires numerically exact spectral line shape simulations in conjunction with iterative fitting procedures. The challenge for ³¹P spin systems mainly arises as a consequence of the 100 percent natural abundance of the isotope ³¹P, causing the need to determine simultaneously relatively large numbers of unknown parameters even for small spin systems.

Here we take the *cis*-PtP₂ fragment in two square-planar Pt(II)-phosphine complexes as representative examples. The spin $^{1/2}$ isotope 195 Pt has a natural abundance of 33.8%. Accordingly, the PtP₂ fragment consists of 33.8% isotopomers containing a (31 P)₂(195 Pt) three-spin system and 66.2% (31 P)₂ spin-pair isotopomers. Typical orders of magnitude of the NMR interactions in the *cis*-PtP₂ fragment are as follows. Chemical shielding anisotropies are of the order 10^3-10^4 Hz (31 P) or 10^5 Hz (195 Pt) for common external magnetic field strengths, homonuclear 31 P $^{-31}$ P and heteronuclear 195 Pt- 31 P direct dipolar coupling constants both are of the order 10^2 Hz, magnitudes of

indirect heteronuclear dipolar coupling constants ${}^{1}J_{iso}({}^{195}Pt, {}^{31}P)$ are of the order 10^{3} Hz, whereas indirect homonuclear dipolar coupling constants ${}^{2}J_{iso}({}^{31}P, {}^{31}P)$ are of the order $10^{0}-10^{1}$ Hz and may have either positive or negative sign.^{1,2} The anisotropy of indirect dipolar coupling ${}^{31}P-{}^{31}P$ may be neglected, but the anisotropy of indirect dipolar coupling ${}^{195}Pt-{}^{31}P$ may amount to the order of 10^{3} Hz and thus may exceed the magnitude of the corresponding direct dipolar coupling constants.

The two compounds containing cis-PtP₂ fragments chosen for this study represent one case for which the crystal structure is not known (compound **1**) whereas the crystal structure of compound **2** is known (Figure 1). ³¹P MAS NMR spectra with and without double-quantum filtration (DQF), as well as ³¹P NMR spectra obtained under off-magic-angle spinning (OMAS) conditions serve as the basis for the determination of all ³¹P NMR parameters in **1** and **2**. In addition, we consider briefly ¹⁹⁵Pt MAS NMR spectra of **1** and **2** and will discuss in more general terms the orientation of ³¹P chemical shielding tensors in molecular moieties with phosphorus in 4-fold coordination.

Experimental Section

Samples. Compound 1. Following a published synthesis procedure,³ pure 1 was obtained in 92% yield after recrystallization from CH₂Cl₂/Et₂O. Solution-state ³¹P NMR (CD₂Cl₂) of 1: $\omega_{iso}^{CS} = -52.2$ ppm, ¹ $J_{iso}(^{195}$ Pt,³¹P) = 2702 Hz; ¹³C CP/MAS NMR of 1 (aromatic region): $\omega_{iso}^{CS} = -150.5$ ppm; -130.9 ppm (² $J_{iso}(^{195}$ Pt,¹³C) = 63 Hz); -121.3 ppm.

Compound **2**. Reaction of *cis*-("Bu₃P)₂PtCl₂ with an equimolar amount of 1,2-dimercapato-benzene in CH₂Cl₂ in the presence of a small amount of NEt₃ at ambient conditions for 12 h yielded crude **2** after evaporation of the solvent. Pure **2** was obtained in 63% yield after recrystallization from MeOH at T = 243 K. Solution-state ³¹P NMR (CD₂Cl₂) of **2**: $\omega_{iso}^{CS} = 5.0$ ppm, ${}^{1}J_{iso}({}^{195}\text{Pt},{}^{31}\text{P}) = 2745$ Hz; ${}^{13}\text{C}$ CP/MAS NMR of **2** (aromatic region): $\omega_{iso}^{CS} = -149.8$ ppm and -146.8 ppm; -129.4 ppm (${}^{2}J_{iso}({}^{195}\text{Pt},{}^{13}\text{C}) = 63$ Hz) and -128.5 ppm (${}^{2}J_{iso}({}^{195}\text{Pt},{}^{13}\text{C}) =$ 68 Hz); -121.5 ppm and -120.8 ppm. Crystals of **2** suitable

^{*} Corresponding author. E-mail: sebald@e3.physik.uni-dortmund.de. † Universität Bayreuth.

[‡] Current address: Universität Dortmund, Fachbereich Physik, D-44221 Dortmund, Germany.

[§] Universität Erlangen.

^{||} Deceased.

Figure 1. Schematic representation of molecules 1 and 2.

Figure 2. Experimental (upper traces) and best-fit simulated (lower traces) ³¹P NMR spectra of **1**. The arrow indicates the isotropic region of the (³¹P)₂-isotopomer spectrum, simulated spectra only take the (³¹P)₂ isotopomer into account. (a) ³¹P $n = 0 R^2$ MAS NMR, $\omega_0/2\pi = -121.5$ MHz, $\omega_r/2\pi = 3521$ Hz; (b) R^2 -DQF ³¹P MAS NMR, $\omega_0/2\pi = -121.5$ MHz, $\omega_r/2\pi = 2650$ Hz, $\tau = 3.0$ ms, $\Delta = 3.5 \mu$ s; (c) ³¹P OMAS NMR, $\omega_0/2\pi = -81.0$ MHz, $\omega_r/2\pi = 2028$ Hz, $\beta_{RL} = 56.023^\circ$.

for structure determination by single-crystal X-ray diffraction were obtained by slow crystallization from a MeOH solution at room temperature. **2** crystallizes in space group Pbca,⁴ the relevant internuclear distances are Pt-P1, 229.4 pm, and Pt-P2, 229.3 pm, and the P1-Pt-P2 bond angle is 98.0°. The molecular structure of **2** is depicted in Figure 4.

³¹P and ¹⁹⁵Pt MAS NMR. ³¹P MAS NMR spectra were recorded on Bruker MSL 100, MSL 200, MSL 300, and DSX 500 NMR spectrometers, equipped with standard 4 or 7 mm double-resonance double-bearing CP MAS probes. The corresponding ³¹P Larmor frequencies $\omega_0/2\pi$ are -40.5, -81.0, -121.5, and -202.5 MHz. Hartmann-Hahn cross polarization (CP) was used (¹H $\pi/2$ -pulse durations 2.5-3.5 μ s, recycle delays 3-5 s, and CP contact times 0.5-2.0 ms). Line shapes of experimental ³¹P MAS NMR spectra were checked to be identical when using either cross polarization or ³¹P single-pulse excitation. ³¹P chemical shielding is quoted with respect to $\omega_{iso}^{CS} = 0$ ppm for the ³¹P resonance of 85% H ₃PO₄. ¹⁹⁵Pt CP MAS NMR spectra were recorded on the MSL 100 (7 mm rotor, $\omega_0/2\pi = -21.4$ MHz) and MSL 200 (4 mm rotor, $\omega_0/2\pi =$ -42.8 MHz) spectrometers, employing ¹H $\pi/2$ -pulse durations

Figure 3. Illustration of the orientation of the 31 P chemical shielding tensors in the S₂PtP₂ fragment of molecule **1**.

Figure 4. Molecular structure of solid **2** according to single-crystal X-ray diffraction.⁴

of 3.5–4.5 μ s and CP contact times of 5 ms. ¹⁹⁵Pt chemical shielding is given relative to Ξ (¹⁹⁵Pt) = 21.4 MHz.⁵

MAS frequencies were generally in the range $\omega_{r}/2\pi = 1-10$ kHz and were actively controlled to within ± 2 Hz. ¹H c.w. decoupling with amplitudes in the range 55 kHz to 85 kHz was employed during signal acquisition. Special care was taken to adjust the magic angle $\beta_{\text{RL}} = \tan^{-1}\sqrt{2}$ for all MAS NMR experiments as accurately as possible by optimizing the line shape of the ³¹P resonance of (Et₂ P=S)₂ under MAS conditions.⁶ The shape of the ³¹P resonance of P(C₆H₁₁)₃ served for calibration of the spinning angle in OMAS NMR experiments. For double-quantum filtration experiments the COSY-like sequence CP_(x) – $\tau - (\pi/2)_{(y)} - \Delta - (\pi/2)_{(\phi)}$ – acquisition was used⁷ where ϕ indicates phase cycling suitable for DQF.⁸ The duration of Δ was fixed as $\Delta = 3.5 \ \mu s$, the duration of τ was varied.

Definitions, Notation, and Numerical Methods. Shielding notation⁹ is used throughout. For the interactions $\lambda = CS$ (chemical shielding), $\lambda = D$ (direct dipolar coupling), and $\lambda = J$ (indirect dipolar (*J*) coupling) the isotropic part ω_{iso}^{λ} , the anisotropy ω_{aniso}^{λ} , and the asymmetry parameter η^{λ} relate to the principal elements of the interaction tensor ω^{λ} as follows:¹⁰ $\omega_{iso}^{\lambda} = (\omega_{xx}^{\lambda} + \omega_{yy}^{\lambda} + \omega_{zz}^{\lambda})/3$, $\omega_{aniso}^{\lambda} = \omega_{zz}^{\lambda} - \omega_{iso}^{\lambda}$, and $\eta^{\lambda} = (\omega_{yy}^{\lambda})$

 $-\omega_{xx}^{\lambda})/\omega_{aniso}^{\lambda}$ with $|\omega_{zz}^{\lambda} - \omega_{iso}^{\lambda}| \ge |\omega_{xx}^{\lambda} - \omega_{iso}^{\lambda}| \ge |\omega_{yy}^{\lambda} - \omega_{iso}^{\lambda}|$. For indirect dipolar coupling $\omega_{iso}^{J} = \pi J_{iso}$, and for direct dipolar coupling $\eta^{\rm D} = \omega_{iso}^{\rm D} = 0$ and $\omega_{aniso}^{\rm D_{ij}} = b_{ij} = -\mu_0 \gamma_i \gamma_j \hbar/2$ $(4\pi r_{ij}^3)$, where γ_i and γ_j denote gyromagnetic ratios and r_{ij} is the internuclear distance between spins S_i and S_j . i, j = 1, 2refers to the homonuclear $({}^{31}P)_2$ part of the $({}^{31}P)_2({}^{195}Pt)$ threespin system. The Euler angles $\Omega_{IJ} = \{\alpha_{IJ}, \beta_{IJ}, \gamma_{IJ}\}$ relate axis system I to axis system J; I,J denote P (principal axis system, PAS), C (crystal axis system, CAS), R (rotor axis system, RAS), or L (laboratory axis system).¹¹ In the context of MAS NMR experiments on the $(^{31}P)_2(^{195}Pt)$ spin system, it is convenient to define the PAS of $\omega^{D_{12}}$ as the CAS, $\Omega_{PC}^{D_{12}} = \{0, 0, 0\}$. Our procedures for numerically exact spectral line shape simulations and iterative fitting are fully described and discussed in detail elsewhere, in particular addressing the n = 0 rotational resonance (R^2) condition for isolated homonuclear spin pairs, ^{12,13} various $n = 0, 1, 2 R^2$ conditions in an isolated homonuclear four-spin system,13 and different heteronuclear dipolar de- and recoupling MAS conditions for isolated heteronuclear two-14 and three-spin systems.^{15,16} For meaningful simulations of OMAS NMR spectra, larger sets of powder angles are needed (e.g., 700 sets of angles selected by REPULSION ¹⁷) than in simulations of MAS NMR spectra (e.g., 232 sets).

Results and Discussion

The following section is organized into three parts. First, we will discuss the experimental determination of the parameters of the ³¹P spin pairs in **1** and **2**. The second part will briefly describe ¹⁹⁵Pt MAS NMR spectra of **1** and **2**. In the third part we will discuss general trends in the orientations of ³¹P chemical shielding tensors for phosphorus atoms in 4-fold coordination.

³¹P NMR of Solid 1 and 2. Experimental options to generate ³¹P NMR spectra of polycrystalline powder samples containing the PtP₂ fragment include experiments on nonspinning samples, on samples spinning under off-magic-angle (OMAS) conditions, and on samples under MAS conditions with or without so-called dipolar recoupling¹⁶ and/or double-quantum filtration techniques applied. With the exception of ³¹P NMR spectra of nonspinning samples of 1 and 2 here all these experimental techniques are used. Static powder patterns of samples such as 1 or 2, containing not only isolated ³¹P spin pairs but also isotopomers ¹⁹⁵Pt(³¹P)₂, are not a suitable starting point for the full characterization of the ³¹P spin pair as ³¹P spectral contributions from both isotopomers overlap heavily. This is not a problem for the simulation of spectra, but it would be a major problem for the extraction of multiple parameters from experimental spectra. Therefore, our data analysis is based on experimental data for which sample spinning provides a separation of the ³¹P spectral contributions from the two isotopomers.

(i) ³¹**P** NMR of 1. Inspection of a ¹³C MAS NMR spectrum of 1 is a good starting point for the analysis of ³¹**P** MAS NMR spectra of 1. Only three sharp ¹³C resonances are observed for the aromatic thiolate ligand, indicating molecular symmetry (see the Experimental Section). Either a C_2 axis or a mirror plane bisecting the P–Pt–P angle are possible, both rendering the two phosphorus sites in a molecule of 1 crystallographically equivalent. The corresponding two ³¹P chemical shielding tensors thus represent a so-called n = 0 rotational resonance (R^2) condition^{12,18} with identical isotropic chemical shielding values but nonidentical chemical shielding tensor orientations. The n = 0 rotational resonance R^2 condition gives rise to complicated spectral line shapes in which the magnitudes and orientations of all interaction tensors of the spin pair are usually sensitively encoded^{12–14} at arbitrary spinning frequencies. A TABLE 1

	$1 (C_2)^a$	$1(\sigma)^a$	2
$\omega_{iso}^{CS_1}$ [ppm]	-60.0	-60.0	+2.1
$\omega_{iso}^{CS_2}$ [ppm]	-60.0	-60.0	+2.5
$\omega_{aniso}^{CS_1}$ [ppm]	78.0 ± 1	77.8 ± 1	-57 ± 3
$\omega_{aniso}^{CS_2}$ [ppm]	78.0 ± 1	77.8 ± 1	-68 ± 3
η^{CS_1}	0.52 ± 0.02	0.50 ± 0.02	0.35 ± 0.1
η^{CS_2}	0.52 ± 0.02	0.50 ± 0.02	0.35 ± 0.1
$\alpha_{PC}^{CS_1}[^\circ]^b$	90 ± 9	92 ± 9	95 ± 21
$\beta_{PC}^{\tilde{CS}_1}$ [°] ^b	51 ± 3	45 ± 3	40 ± 11
$\gamma_{PC}^{CS_1}$ [°] ^b	0 ± 3	0	43 ± 30
$\alpha_{PC}^{CS_2} [\circ]^b$	90 ± 9	-92 ± 9	49 ± 21
$\beta_{PC}^{CS_2} [\circ]^b$	231 ± 3	88 ± 9	130 ± 10
$\gamma_{PC}^{CS_2} [\circ]^b$	180 ± 3	0	0
$^{2}J_{iso}(^{31}P,^{31}P)$ [Hz]	-9.3 ± 5	-13.0 ± 5	-23.0 ± 6
$b_{12}/2\pi$ [Hz]	-708 ± 31	-683 ± 31	-475°

^{*a*} The Euler angles $\Omega_{PC}^{CS_{1,2}}$ are related by symmetry. If related by C_2 symmetry: $\alpha_{PC}^{CS_2} = \alpha_{PC}^{CS_1}$; $\beta_{PC}^{CS_2} = \beta_{PC}^{CS_1} + \pi$; $\gamma_{PC}^{CS_2} = -\gamma_{PC}^{CS_1} + \pi$. If related by a mirror plane σ : $\alpha_{PC}^{CS_2} = -\alpha_{PC}^{CS_1}$; $\beta_{PC}^{CS_2} = \pi - \beta_{PC}^{CS_1}$; $\gamma_{PC}^{CS_2} = \gamma_{PC}^{CS_1}$; $\delta_{PC}^{CS_2} = \pi - \beta_{PC}^{CS_1}$; $\gamma_{PC}^{CS_2} = \gamma_{PC}^{CS_1}$. ^{*b*} The Euler angles Ω_{PC}^{CS} are given relative to $\Omega_{PC}^{D_{12}} = \{0, 0, 0\}$ with the *x* axis of the dipolar coupling tensor taken as parallel to the C_2 symmetry axis. ^{*c*} Calculated from the crystal structure.⁴

priori, in the absence of knowledge of the crystal structure of **1**, we do not know which of the two symmetry operations is present, and experimental ³¹P MAS NMR spectra of **1**, obtained at different MAS and Larmor frequencies, have to be fitted for either of the two possibilities. Note that the presence of a C_2 symmetry element is a special case for a spin pair as it defines the absolute orientation of the two ³¹P chemical shielding tensors¹³ whereas a symmetry plane only defines their relative orientations, leaving free rotation of the tensors around the unique axis of the ³¹P–³¹P dipolar coupling tensor possible.

Figure 2a depicts a ³¹P MAS NMR spectrum of 1, together with the corresponding final best-fit simulated spectrum. Iterative fitting of various different straightforward ³¹P MAS NMR spectra of 1 converges to identical solutions when assuming either of the two symmetry elements to be present. In principle the two different symmetries are distinguishable but they turn out indistinguishable for the ³¹P spin pair in 1 because of the values of the Euler angles being $\alpha_{PC}^{CS_1} = 90^\circ \pm 9^\circ$ and $\gamma_{PC}^{CS_1} = 0^\circ \pm 3^\circ$ (see Table 1). Iterative fitting of several ³¹P MAS NMR spectra of 1 defines, for instance, the set of angles $\Omega_{PC}^{CS_1} = \{87\}$ \pm 11, 51 \pm 6, 0 \pm 6}. This result can be further improved by additional analyses of the ³¹P spectral line shapes obtained by applying a COSY-like pulse sequence with double-quantum filtration (DQF) under MAS conditions and by analyzing experimental spectra obtained under OMAS conditions. Experimental ³¹P R²-DQF and OMAS NMR spectra of 1 are depicted in Figure 2, panels b and c, together with the corresponding best-fit simulations. R²-DQF MAS NMR line shapes at and near the $n = 0 R^2$ condition are known to exhibit higher sensitivities toward anisotropic interaction parameters than conventional R^2 line shapes.¹² Spinning the sample at an angle $\beta_{\rm RL} \neq \tan^{-1}\sqrt{2}$ (OMAS) leads to spinning sideband patterns where each sideband represents a scaled powder pattern, slightly different from the spinning sideband pattern obtained when spinning exactly at the magic angle.¹⁹⁻²³ With OMAS conditions only slightly deviating from the magic angle we find that often minima regions in error maps are more sharply defined than based on R^2 or R^2 -DQF MAS NMR line shapes. The uncertainties of the data given in Table 1 are the combined constraints from fitting experimental ³¹P R² and R²-DQF MAS as well OMAS spectra of 1. Our ³¹P NMR data yield a P-P distance in 1 of 305 ± 2 pm, in excellent agreement with the

Figure 5. Experimental (upper traces) and best-fit simulated (lower traces) ³¹P NMR spectra of **2**. The arrow indicates the isotropic region of the (³¹P)₂-isotopomer spectrum, simulated spectra only take the (³¹P)₂ isotopomer into account. (a) ³¹P $n = 0 R^2$ MAS NMR, $\omega_0/2\pi = -121.5$ MHz, $\omega_r/2\pi = 2046$ Hz; (b) R^2 -DQF ³¹P MAS NMR, $\omega_0/2\pi = -121.5$ MHz, $\omega_r/2\pi = 2740$ Hz, $\tau = 3.3$ ms, $\Delta = 3.5 \mu$ s; (c) ³¹P OMAS NMR, $\omega_0/2\pi = -81.0$ MHz, $\omega_r/2\pi = 2075$ Hz, $\beta_{RL} = 56.196^\circ$.

results of X-ray diffraction studies of numerous closely related compounds containing a cis-S₂PtP₂ moiety.²⁴

Figure 3 illustrates the orientation of the two ${}^{31}P$ chemical shielding tensors in the molecule **1**. For the ${}^{31}P$ chemical shielding tensors in **1**, the *zz* component represents the *most* shielded direction and is oriented along the direction of the respective Pt-P bonds. For the moment, we leave the issue of the ${}^{31}P$ chemical shielding tensor orientation at this stage but will return to this topic later (see below).

(ii) ³¹P NMR of 2. The starting point for the analysis of ³¹P MAS NMR spectra of 2 is the crystal structure. The molecular structure of solid 2 is shown in Figure 4. The two phosphorus sites in the molecule are not crystallographically equivalent and will thus give rise to two slightly different ³¹P resonances. In accordance with the crystal structure data, ¹³C MAS NMR spectra of 2 display six ¹³C resonances for the aromatic ring of the thiolate ligand (see the Experimental Section). From the known internuclear ${}^{31}P-{}^{31}P$ distance in 2, the corresponding dipolar coupling constant is calculated and does not have to be determined from iterative fitting of ³¹P MAS NMR spectra of 2. Other than for 1, however, in 2 there is no symmetry relationship between the two ³¹P chemical shielding tensors, and accordingly, simulations have to allow for a (small) difference in isotropic chemical shielding of the two resonances as well as for unrelated Euler angles describing the orientations of the two ³¹P chemical shielding tensors. Despite the known crystal structure, simulations of the ³¹P MAS NMR spectra of 2 involve more unknown parameters than was the case for 1.

We follow the same procedure as before. After recording several different ³¹P R^2 and R^2 -DQF MAS as well OMAS NMR spectra of **2** and combining all results, we obtain the data given in Table 1. These best-fit parameters yield the simulated spectra shown in Figure 5, together with the corresponding experimental ³¹P NMR spectra of **2**. Determination of the ³¹P chemical shielding values of **2**, representing a near n = 0 ³¹P R^2 spin system, particularly gains from R^2 -DQF MAS NMR experiments

Figure 6. Illustration of the orientation of the 31 P chemical shielding tensors in the S₂PtP₂ fragment of molecule **2**.

Figure 7. Experimental (upper traces) and simulated (lower traces) ¹⁹⁵Pt MAS NMR spectra of **1** (a) and **2** (b); arrows indicate center band resonances, $\omega_0/2\pi = -42.8$ MHz. (a) $\omega_r/2\pi = 7449$ Hz; (b) $\omega_r/2\pi = 7439$ Hz.

where all orientational parameters are more sensitively encoded than in the conventional R^2 MAS or OMAS NMR spectra.¹² Note that for **1** and **2** the values as well as the signs of the isotropic *J*-coupling constants ${}^{2}J_{iso}({}^{31}P,{}^{31}P)$ are well defined from the line shape analyses even if these *J* couplings are not resolved in the spectra and none of the splittings visible in some of the spectra directly depict these *J* couplings.

Again, just as before for 1 (see Figure 3), we illustrate the orientations of the two ³¹P chemical shielding tensors in 2 in Figure 6. Also for 2 the direction of the *zz* components of the two chemical shielding tensors nearly coincide with the directions of the corresponding Pt-P bond directions. However, in contrast to 1, for 2 the *zz* components of the two chemical shielding tensors represent the *least* shielded components. We will return to this seeming puzzle below.

¹⁹⁵Pt MAS NMR of 1 and 2. ¹⁹⁵Pt MAS NMR spectra of 1 and 2 are depicted in Figure 7. Given that we observe the X-part spectrum of the ¹⁹⁵Pt(³¹P)₂ three-spin systems in 1 and 2 and that we know all parameters of the ³¹P parts of these spin systems, one might expect to be able to fully characterize also the ¹⁹⁵Pt part of the spin systems, provided some heteronuclear dipolar recoupling pulse sequence¹⁶ is applied, or a sufficiently slow MAS rate is used so that the heteronuclear ¹⁹⁵Pt—³¹P direct dipolar coupling interactions are not completely averaged out.

Obviously (Figure 7), experimental ¹⁹⁵Pt MAS NMR spectra of **1** and **2** are well reproduced by numerical simulations. Closer inspection of various experimental data, however, reveals that even at a low Larmor frequency $\omega_0/2\pi = -21.4$ MHz and at very slow spinning rates $\omega_r/2\pi \le 800$ Hz, the only sensitively encoded fit parameters are the anisotropy of the ¹⁹⁵Pt chemical shielding and the isotropic *J*-coupling constants ¹J_{iso}(¹⁹⁵Pt, ³¹P).

In addition, it turns out that the spinning angle is a highly sensitive fit parameter: deviations from the magic angle as small as $\pm 0.05^{\circ}$ lead to significant changes in the spinning sideband patterns of these ¹⁹⁵Pt MAS NMR spectra. This finding for MAS NMR spectra of spin-1/2 isotopes with very large chemical shielding anisotropies is familiar from MAS NMR experiments on quadrupolar nuclei where large quadrupolar interactions also lead to spectra being highly sensitive to the accurate setting of the magic angle.²⁵ Even if the large ¹⁹⁵Pt chemical shielding anisotropy would not be the overwhelmingly large interaction parameter in the ${}^{195}Pt({}^{31}P)_2$ three-spin systems in 1 and 2, we may be faced with another difficulty in determining the geometry of the PtP2 moiety from ³¹P and ¹⁹⁵Pt MAS NMR experiments. The values of the J-coupling constants ${}^{1}J_{iso}({}^{195}Pt, {}^{31}P)$ in **1** and **2** are ca. 2700 Hz. Therefore, an anisotropy of this J-coupling interaction of a similar magnitude is likely to be present. ω_{aniso}^{J} may add to, or subtract from, the respective dipolar coupling constants, with the J-coupling tensor having an unknown orientation. This may then lead to an apparent dipolar coupling constant b_{eff} which would not directly reflect the internuclear ¹⁹⁵Pt-³¹P distances, making it impossible to deduce these internuclear distances. In fact, it has been found earlier for the CdP₂ fragment in a Cd(II)-phophine complex that the heteronuclear ¹¹³Cd-³¹P dipolar coupling and the anisotropy of the J coupling ${}^{1}J({}^{113}Cd, {}^{31}P)$ essentially cancel each other.15

³¹P Chemical Shielding Tensor Orientations. There is a fair number of ³¹P solid-state NMR studies in the literature in which ³¹P chemical shielding tensor orientations have been determined experimentally. ³¹P NMR experiments on oriented single crystals^{14,26–43} as well as ³¹P NMR studies on polycrystalline powders^{1,13-15,44-47} have been reported. Most often, the ³¹P chemical shielding tensor orientations are being discussed by describing the orientation of certain bond directions relative to the directions of the xx, yy, and zz components of the ^{31}P chemical shielding tensors. Implicitly, we have so far followed this common practice (see Figures 3 and 6) by mentioning that in both 1 and 2 the ³¹P chemical shielding tensors are oriented such that the directions of their zz components nearly coincide with the respective Pt-P bond directions. This line of argument, however, leads to some confusion. Why should in one of these two very closely related compounds the most shielded direction coincide with Pt-P bond direction, and why should this be the *least* shielded direction in the second compound? Obviously, it is not the Pt-P bond direction that reveals the common pattern of these ³¹P chemical shielding tensor orientations.

Here it helps to consult results in the literature which cover a wide range in terms of chemistry, ranging from phosphorus in organophosphates and in inorganic phosphates all the way to phophorus in transition-metal phosphine complexes. All these diverse compounds have in common that the phosphorus atom is 4-fold coordinated in a more or less distorted tetrahedral PE_4 environment (E = C, O, S, Pt, Hg, Cd, ...). The corresponding ³¹P chemical shielding tensors also have something in common, irrespective of the chemical nature of the compounds. One can always find a local (pseudo)plane of symmetry, defined by the P atom and two of its neighbored atoms, and always the direction of one of the ³¹P chemical shielding tensor components is perpendicular to this plane. Sometimes the final result is such that one of the remaining two components of the ³¹P chemical shielding tensor will actually coincide with a molecular P-E bond direction (for example, in 1 and 2), but the local plane is the dominating element in defining the ${}^{31}P$ chemical shielding tensor orientation. Recasting our results on

Figure 8. Orientations of the ³¹P chemical shielding tensors in **1** (a) and **2** (b) with the local planes defined by C-P-Pt shown; the directions of the intermediate *yy* components of the shielding tensors are perpendicular to these planes.

1 and **2** in the light of a local plane as the determining element, immediately reveals the common property of the ³¹P chemical shielding tensors in these two compounds. Drawing a plane defined by the local coordination PtPC₃, containing the central P atom in its distorted tetrahedron environment, the platinum atom and the directly bonded carbon atom of one of the three organic substituents of the phosphine ligand, identifies that in both cases the direction of the intermediate *yy*-component of the ³¹P chemical shielding tensor is oriented perpendicular to this idealized local plane. This is illustrated in Figure 8.

The determining role of a local plane in defining ³¹P chemical shielding tensor orientations becomes particularly clear from the example of an organic phosphate salt. The ³¹P chemical shielding tensor in tris-ammonium phosphoenolpyruvate¹⁴ has a very small asymmetry parameter η^{CS} and the P atom is in a nearly tetrahedral local O₃PO-C coordination. Chemical intuition might thus suggest that the direction of the nearly unique *zz*-component of this ³¹P chemical shielding tensor should approximately coincide with the chemically distinct P-C bond direction in this O₃PO-C moiety. This is not the case as is revealed by ³¹P single-crystal NMR, again it is a local plane spanned by two of the oxygen atoms and the phosphorus atom that marks the orientation of the ³¹P chemical shielding tensor, the directions of neither of the shielding tensor components coincide with a bond direction in this molecule.

Summary and Conclusions

Combining ³¹P R^2 and R^2 -DQF MAS NMR and OMAS NMR experiments provides a good database for the full characterization of ³¹P spin pairs in polycrystalline powder samples by line shape analysis. Even if not necessary for reasons of backgroundsignal suppression, R^2 -DQF MAS experiments and in particular OMAS NMR spectra are a useful complement to conventional R^2 MAS NMR experiments in that these additional experiments display different, and often higher, sensitivities to the various anisotropic interaction parameters of the spin pair. Owing to the very large ¹⁹⁵Pt chemical shielding anisotropies and the

TABLE 2: ¹⁹⁵ Pt NMR Data of 1 and 2

	1	2
ω_{iso}^{CS} [ppm]	338	225
ω_{aniso}^{CS} [ppm]	550	-907
η^{CS}	0.4	0.1
${}^{1}J_{iso}({}^{195}\text{Pt},{}^{31}\text{P})$ [Hz]	2666	2708; 2772

unknown anisotropies of the *J* couplings ${}^{1}J({}^{195}Pt, {}^{31}P)$ it turns out impossible to derive the orientation of the ${}^{195}Pt$ chemical shielding tensor in molecular fragments P₂Pt from ${}^{195}Pt$ MAS NMR experiments, although good quality ${}^{195}Pt$ MAS NMR spectra are easily obtained. From the ${}^{31}P$ NMR results on **1** and **2** and from numerous literature data a unified picture concerning the dominating motif of the orientation of ${}^{31}P$ chemical shielding tensors of phosphorus sites in 4-fold coordination emerges as a local (pseudo)plane rather than the directions of the P-element bond directions, irrespective of the chemical nature of the specimen.

Acknowledgment. Financial support of our work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. We thank Bruker Biospin GmbH, Rheinstetten, for providing generous access to the DSX 500 NMR spectrometer, F. W. Heinemann, Erlangen, for making the single-crystal X-ray diffraction data of 2 available to us, and O. J. Price, Exeter, for helping with some simulations.

References and Notes

(1) Dusold, S.; Klaus, E.; Sebald, A.; Bak, M.; Nielsen, N. C. J. Am. Chem. Soc. 1997, 119, 7121.

(2) Davies, J. A.; Dutremez, S. Coord. Chem Rev. 1992, 114, 61.

(3) Fazlur-Rahman, A. K.; Verkade, J. G. Inorg. Chem. 1992, 31, 5331.

(4) Geipel, F.; Heinemann, F. W.; Sellmann, D. Unpublished work.
(5) Sebald, A. MAS and CP/MAS NMR of Less Common Spin-1/2

(5) Sebald, A. MAS and CP/MAS NMR of Less Common Spin-1/2 Nuclei. In *NMR Basic Principles and Progress*; Springer-Verlag: Berlin, 1994; Vol. 31, pp 91–131.

(6) Challoner, R.; Sebald, A. Solid State Nucl. Magn. Reson. 1995, 4, 39

(7) Nielsen, N. C. N.; Creuzet, F.; Griffin, R. G.; Levitt, M. H. J. Chem. Phys. **1992**, *96*, 5668.

(8) Ernst, R. R.; Bodenhausen, G.; Wokaun, A. *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*; Clarendon Press: Oxford, U.K., 1987.

(9) Levitt, M. H. J. Magn. Reson. 1997, 126, 164.

(10) Haeberlen, U. Advances in Magnetic Resonance, Supplement 1; Academic Press: New York, 1976.

(11) Edmonds, A. R. Angular momentum in quantum mechanics; Princeton University Press: Princeton, NJ, 1974.

(12) Bechmann, M.; Sebald, A. J. Magn. Reson. 2005, 173, 296.

(13) Dusold, S.; Milius, W.; Sebald, A. J. Magn. Reson. 1998, 135, 500.

(14) Dusold, S.; Maisel, H.; Sebald, A. J. Magn. Reson. 1999, 141, 78.

(15) Bechmann, M.; Dusold, S.; Förster, H.; Haeberlen, U.; Lis, T.;

Sebald, A.; Stumber, M. Mol. Phys. 2000, 98, 605.

(16) Dusold, S.; Sebald, A. Mol. Phys. 1998, 95, 1237.

(17) Dusold, S.; Sebald, A. Dipolar Recoupling under Magic-Angle Spinning Conditions. In *Annual Reports on NMR Spectroscopy*; Academic Press: London, 2000; Vol. 41, pp 185–264.

(18) Bak, M.; Nielsen, N. C. J. Magn. Reson. 1997, 125, 132.

(19) Maricq, M. M.; Waugh, J. S. J. Chem. Phys. 1979, 70, 3300.

(20) Nakai, T.; McDowell, C. A. Mol. Phys. 1992, 77, 569.

(21) Nakai, T.; McDowell, C. A. J. Chem. Phys. **1992**, 96, 3452.

(22) Miura, H.; Terao, T.; Saika, A. J. Chem. Phys. 1986, 85, 2458.
(23) Marichal, C.; Sebald, A. Chem. Phys. Lett. 1998, 286, 298.

(24) Hoffmann, A.; Schnell, I. ChemPhysChem. 2004, 5, 966.

(25) Crystal-structure determinations of several closely related Pt(II) complexes with a cis-S₂PtP₂ core have been reported in the literature: Fenn, R. H.; Segrott, G. R. J. Chem. Soc. A 1970, 2781. Lin, I. J. B.; Chen, H. W.; Fackler, J. P. Inorg. Chem. 1978, 17, 394. Dudis, D.; Fackler, J. P. Inorg. Chem. 1982, 21, 3577. Bryan, S. A.; Roundhill, D. M. Acta Crystallogr. C 1983, 39, 184. Briant, C. E.; Calhorda, M. J.; Hor, T. S. A.; Howells, N. D.; Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1983, 1325. Shaver, A.; Lai, R. D.; Bird, P. H.; Wickramasinghe, W. Can. J. Chem. 1985, 63, 2555. Vicente, R.; Ribas, J.; Solans, X.; Font-Altaba, M.; Mari, A.; de Loth, P.; Cassoux, P. Inorg. Chim. Acta 1987, 132, 229. Weigand, W.; Bosl, G.; Polborn, K. Chem. Ber. 1990, 123, 1339. Dudis, D. S.; King, C.; Fackler, J. P. Inorg. Chim. Acta 1991, 181, 99. Bevilacqua, J. M.; Zuleta, J. A.; Eisenberg, R. Inorg. Chem. 1994, 33, 258. Belluco, U.; Bertani, R.; Michelin, R. A.; Mozzon, M.; Bombieri, G.; Benetollo, F. Gazz. Chim. Ital. 1994, 124, 487. Chen, Q.; Boeheim, F.; Dabrowiak, J.; Zubieta, J. Inorg. Chim. Acta 1994, 216, 83.

(26) Ashbrook, S. E.; Wimperis, S. High-resolution NMR of quadrupolar nuclei in solids: The satellite-transition magic angle spinning (STMAS) experiment. Prog. Nucl. Magn. Reson. Spectrosc. **2004**, 45, 53–108.

(27) Kohler, S. J.; Ellett, D. J., jr.; Klein, M. P. J. Chem. Phys. 1976, 64, 4451.

(28) Kohler, S. J.; Klein, M. P. Biochem. 1976, 15, 967.

(29) Kohler, S. J.; Klein, M. P. J. Am. Chem. Soc. 1977, 99, 8290.

- (30) Herzfeld, G.; Griffin, R. G.; Haberkorn, R. A. Biochem. 1978, 17, 2711.
- (31) Tutunjian, P. N.; Waugh, J. S. J. Chem. Phys. 1982, 76, 1223.
- (32) Tutunjian, P. N.; Tropp, J.; Waugh, J. S. J. Am. Chem. Soc. 1983, 105, 4848.

(33) Naito, A.; Sastry, D. L.; McDowell, C. A. Chem. Phys. Lett. 1985, 115, 19.

(34) Hauser, H.; Radloff, C.; Ernst, R. R.; Sundell, S.; Pascher, I. J. Am. Chem. Soc. 1988, 110, 1054.

(35) McDowell, C. A.; Naito, A.; Sastry, D. L.; Takegoshi, K. J. Magn. Reson. 1988, 78, 498.

(36) Ermark, F.; Topic, B.; Haeberlen, U.; Blinc, R. J. Phys.: Condens. Matter 1989, 1, 5489.

(37) Eichele, K.; Wasylishen, R. E. J. Phys. Chem. 1994, 98, 3108.

(38) Eichele K.; Wu, G.; Wasylishen, R. E.; Britten, J. F. J. Phys. Chem. **1995**, *99*, 1030.

(39) Lumsden, M. D.; Wasylishen, R. E.; Britten, J. F. J. Phys. Chem. 1995, 99, 16602.

(40) Eichele K.; Wasylishen, R. E.; Maitra, K.; Nelson, J. H.; Britten, J. F. *Inorg. Chem.* **1997**, *36*, 3539.

(41) Jensen, T. R.; Hazell, R. G.; Vosegaard, T.; Jakobsen, H. J. Inorg. Chem. 2000, 39, 2026.

(42) Gee, M.; Wasylishen, R. E.; Eichele, K.; J. Phys. Chem. A 2000, 104, 4598.

(43) Grossmann, G.; Scheller, D.; Malkina, O. L.; Malkin, V. G.; Zahn, G.; Schmidt, H.; Haeberlen, U. Solid State Nucl. Magn. Reson. 2000, 17, 22.

(44) Eichele, K.; Wasylishen, R. E.; Corrigan, J. F.; Taylor, N. J.; Carty,

A. J.; Feindel, K. W.; Benard, G. M. J. Am. Chem. Soc. 2002, 124, 1541.
 (45) Power, W. P.; Wasylishen, R. E. Inorg. Chem. 1992, 31, 2176.

(46) Eichele, K.; Ossenkamp, G. C.; Wasylishen, R. E.; Cameron, T. S. Inorg. Chem. **1999**, *38*, 639.

(47) Bernard, G. M.; Wu, G.; Lumsden, M. D.; Wasylishen, R. E.; Maigrot, N.; Charrier, C.; Mathey, F. J. Phys. Chem. A **1999**, 103, 1029.

(48) Potrzebowski, M. J.; Assfeld, X.; Ganicz, K.; Olejniczak, S.; Cartier, A.; Garsiennet, C.; Tekely, P. J. Am. Chem. Soc. 2003, 125, 4223.